AI换脸、隐身攻击、破解人脸解锁...AI安全到底有多可怕?(2)
时间:2019-08-27 09:08 来源:网络整理 作者:采集插件 点击:次
可以看到,无论是远距离、近距离,稳定拍摄还是运动拍摄中导致失焦,添加了对抗样本噪音的车辆在绝大部分情况下都没有被识别出,“隐身”最为成功。
图:关灯瞬间以及昏暗光线下的“隐身”效果 即便外界光线发生变化,在关灯瞬间“隐身”效果依旧稳定。 值得指出的是,目前国际上发布的相关研究更趋于“静态”环境中的隐身,比如过度的大幅度动作可能会导致“隐身”失效,RealAI团队的“隐身”试验则可以适应高难度的动态环境,比如高频抖动、角度变换、失焦等,而且隐身效果更为突出。 目前目标检测技术已经大规模的应用到商业场景中,例如公共场所动态监控、安防布控以及自动驾驶汽车...... 而上文的“隐身”技术可能用于现实的视频监控系统或干扰自动驾驶汽车的感知系统。 设想一下,当监控系统失去监管效力、自动驾驶汽车失控,将引发怎样的后果? 警方过度信任AI监控导致罪犯轻松利用“隐身”技术逃脱、自动驾驶汽车被路边的某个“图案”误导而引发车祸....公众的人身安全、社会安全乃至国家安全都将面临挑战,政府、企业和社会都应该重新评估AI算法的可靠性。 刷脸时代,你的“脸”正在出卖你 随着AI在人脸识别上越来越精通,人脸解锁已经成为智能手机的标配。但是,我们的脸真的安全吗? 最近,RealAI的AI安全研究团队利用一副基于“对抗样本”生成的“眼镜”成功破解智能手机的面部解锁,是国际上首个从算法层面对商用手机高复杂识别模型实现黑盒攻击的团队。
图:正常情况下无法解锁他人手机
图:带上道具瞬间完成解锁,破解成功 图片中可以看到,“攻击者”戴上眼镜识别的瞬间便可成功解锁,无需特定的角度和光线,无需暴力尝试。与照片解锁、造假视频、3D建模等传统方法相比,该方法成本更低、成功率更高。 深度神经网络(CNN)容易受到“对抗样本”的攻击影响。此前就有研究团队提出,通过带有干扰的“配饰”来欺骗模型逃逸识别。 但该想法只停留于研究层面,仅在实验场景中结构较简单的模型上进行过验证,而且是基于对模型内部参数已知的情况下实现的“白盒”攻击。 RealAI研究团队则将其成功应用到物理世界和黑盒场景,对内部参数未知的情况下,破解商用手机中复杂度、精准度更高的识别模型。
图:基于对抗样本生成的“眼镜”道具 RealAI进行该项研究,目的是为了从算法层面找到当前主流人脸识别模型的安全漏洞,从而针对性的进行防御。目前团队也已经研发出相应的防御技术,可能很大程度上检测并防御当前的对抗样本攻击。 通过对手机识别系统进行防火墙升级,在解锁的过程中可以识别出“攻击者”,并对其拒绝访问。
图:RealAI的AI防火墙技术可检测并防御“对抗样本”攻击 在正在到来的“刷脸”时代,我们似乎一再追求“好不好用”,对“安不安全”却专注甚少。当我们沉浸在“技术进步”的喜悦中时,也该思考下,我们写在“脸”上的密码或许正在出卖我们。 保护AI安全发展,我们可以做什么? 人工智能在许多场景的应用都与人身安全息息相关,如自动驾驶、身份认证、监控安防等。如果在这些领域,一旦AI技术被滥用或者AI算法出现漏洞,将直接侵害人身权益,后果难以挽回。 监控部门也已经注意到AI安全问题的严重性。今年4月全国人大常委会审议的《民法典人格权编(草案)》里,正式加了一条:任何组织和个人不得以利用信息技术手段伪造的方式侵害他人的肖像权。 5月,国家网信办会同有关部门发布《数据安全管理办法(征求意见稿)》,其中表示,网络运营者不得以谋取利益或损害他人利益为目的利用大数据、人工智能等技术自动合成信息。 除了加强监管力度,确保人工智能安全、可控发展,也需要从安全对抗的本质上出发,铸造更高门槛的防御技术,以AI应对AI。 最后,AI安全问题已经不再只是学术谈论,社会各界都应该提高对AI安全的意识,毕竟,AI已来,而解决AI安全问题已经迫在眉睫! (责任编辑:admin) |




