网络安全检测|网络安全服务|网络安全扫描-香港墨客投资移动版

主页 > 业界资讯 > Routers配置

基于数字孪生的铁路通信实景维护系统研究(3)

数据库的设计需要兼顾iTwin服务中的BIM三维模型数据及其他非三维数据,如工程项目数据、设备维护数据、字典数据、人员数据等。SQLite是一款开源的小型嵌入式数据库,体量小、占用系统资源少、独立性高、可移植性强[18],为了方便模型文件的读取,系统选择SQLite数据库存储BIM数据。其他非三维数据选择SQL Server数据库进行存储,它对关系型数据和结构化数据的存储更有优势[19]。

2.2 应用层

应用层主要完成通信维护系统中各业务模块的逻辑处理,模块的请求和数据通过WebApi服务的形式对外发布,供表现层调用,同时通过ADO.Net数据库访问接口技术与数据库服务器进行交互。

应用层的设计需要考虑预留外部系统数据接入口,接入的数据经过识别、转换和整合,存入数据库。通过对数据层中的多源异构数据进行融合,并通过特征提取、聚类分析、深度学习等人工智能算法,对融合信息进行数据分析和处理,快速定位故障位置,预测故障发生概率,为最佳维护作业时间及维护周期的制定提供参考依据,从而优化维护作业流程、提高组织管理效率、加强人员及设备的精细化管理,对铁路通信维护工作的决策提供有力支撑。

2.3 表示层

表示层位于三层架构的最上层,与用户直接接触,在通信实景维护系统中即为浏览器页面,包括线路展示页、BIM实景页、设备维护页、资源管理页、应急查询页及员工培训页等。旨在实现铁路通信设备从微观到宏观信息的多层次可视化,为设备维护管理提供设备维护、设备定位、应急查询等一键式综合信息查询及处理功能[20],提高铁路通信维护工作的智能化、数字化水平。

表示层通过接口获取应用层输出的成果信息。由于业务逻辑算法主要集中在应用层,减轻了表示层的运算压力,使其能够更专注于页面的渲染能力和展示效果。在BIM实景页,基于3D可视化和交互技术,通过通信设施设备的数字孪生体,展示其物理三维模型、空间位置、实时工作状态、端口连接关系等信息。此外,在设计表示层时,必须考虑不同用户的工作性质及操作习惯,引入模块化、组件化的开发思想和设计模式,降低模块间的耦合性,实现表示层功能的可插拔式设计。

3 基于iTwin服务的BIM实景架构

iTwin服务是Bentley公司基于数字孪生需求提出的数字孪生解决方案。它以iModel Bridge(模型格式转换)、iModel Bank(模型存储库)、iTwin.js(Web三维可视化技术)开源开发体系为核心,集成了Bentley在数字模型建立、过程协作、资产管理等方面的相关技术,提供了丰富的数字化服务。iTwin服务集成BIM设计工具和多源数字化工程内容,在3D模型的基础上,可实现数字孪生的“4D可视化”,即根据项目/资产时间线记录工程变更信息。根据iTwin服务,本系统研究设计了铁路通信BIM实景模块,以支持通信基础设施在运维阶段的数字孪生应用。基于iTwin服务的BIM实景架构如图2所示。

图2  基于iTwin服务的BIM实景架构

3.1 BIM模型构建

在设计期,桥梁及房建专业的设计结果多以实体形态为设计标准,与之相比,通信专业的设计更加关注设备的逻辑关系而非设备实体本身。此外,精细度越高的模型,体量越大,渲染时间越长,导致在与建模平台交互时,系统过载,操作缓慢。因此,设计期的模型可以不必过分关注模型的真实度、精细度,能够示意设计对象即可。但在运维期,由于通信设备厂家众多,设备外形、功能参差不齐,相应地,维护作业方法也各有不同,这无异于增加了维护作业人员的工作难度。为了充分利用数字孪生设备“所见即所得”的特点,保证运维工作直观、准确地开展,细化生产管理,维护期的模型构建需要尽可能保证模型的真实性,细化至设备端口级别。

“数字孪生铁路”概念的出现,对铁路工程的数字化程度提出了更高的要求。为了提高数字资产创建和交互过程中的规范性和准确性,今年4月,国铁集团工管中心发布了《关于开展铁路数字工程认证试点工作的通知》,拟依托酒额铁路、西十铁路开展数字工程认证试点工作,并以四电工程为先导,建立铁路数字工程认证体系,其中就包括了对四电工程BIM模型的检验检测工作。因此,在创建铁路通信专业BIM族库时,应当符合铁路BIM联盟制定的铁路BIM标准体系框架,并包含铁路IFC、IFD等标准内容。

3.2 模型转换

(责任编辑:admin)